

Driving change

"Grand Design"

- Top down
- Looking far ahead
- Catchment/national scale
- Imagination & evidence

Locally led adaptation

- Bottom-up
- Near future
- Local (neighborhood) scale
- Demonstration

Cities: challenges & shifting paradigms

Current emphasis still too much on short-term solutions

Urbanization, transition in energy & food production will likely be dominant drivers shaping the future of our cities

Integrated vision on the future (and long-term strategy) is often lacking

Rotterdam: Transition to a Water Sensitive City Small steps, opportunistic, linking short actions to long-term aspirations (vision)

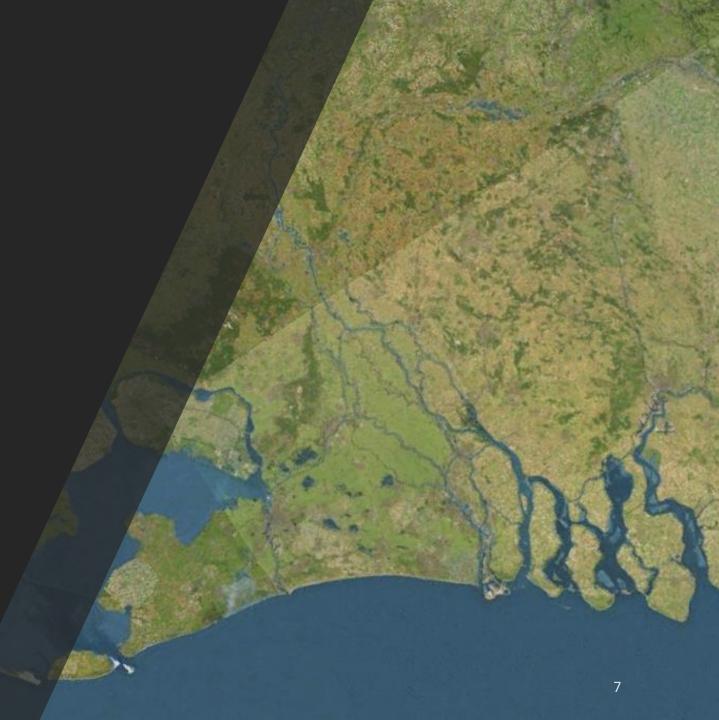
Paradigms are shifting (1)

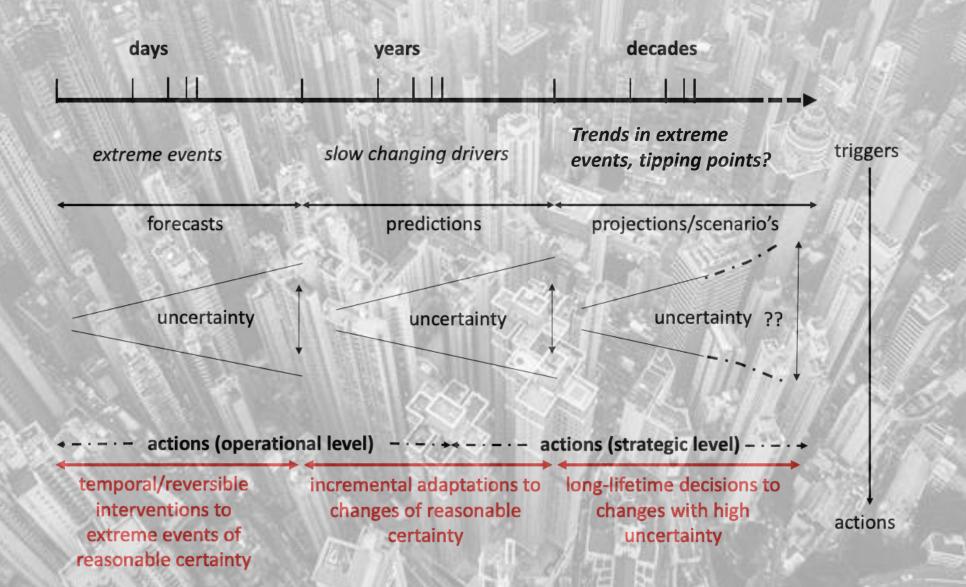
Broadly shared assumptions (before 2010):

- 1.Climate change is slow, and might accelerate after 2050
- 2.We know how the water-system works; we can predict how it will react on different pressures in the future, so we can plan ahead and will gradually strengthen the present system.
- 3.By anticipating long term future-conditions we will prevent disastrous events

Paradigms are shifting (2)

But now, present day, these assumptions are changing:


- 1.Climate change is happening now; and is not gradual
- 2. The water-system that we thought we knew so well reacts in a way we did not expect
- 3.Incrementally adjusting our water infrastructure will likely not be enough
- 4. Cities have to look beyond borders to cope with extreme weather events (systems approach)



The current emphasis on short-term solutions for the world's deltas will greatly constrain options for designing sustainable solutions in the long term.

(source: Tessler et al., Science 2015)

Connecting time scales

CLIMATE TIPPING POINTS TIPPING POINTS

CONNECTIVITY

Amazon rainforest Frequent droughts

Arctic sea ice Massive losses

Atlantic circulation A slowdown since 1950s

Boreal forest Increase in fires

Greenland ice sheet Ice loss accelerating

West Antarctic ice sheet Ice loss accelerating

Permafrost Melting

> Wilkes Basin East Antarctica ice loss accelerating

Coral reef

Mass die-offs

COP26

- Need to act now
- Resistance to change
- Appealing future?

Positive tipping point: 'restorative redirection'

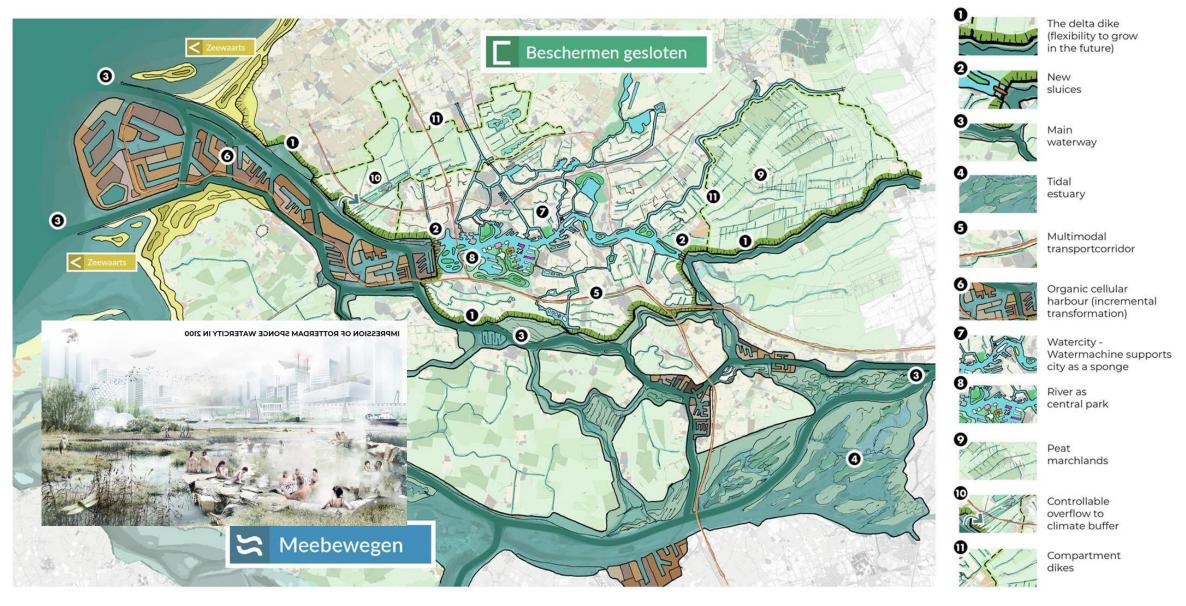
Lead time vs warning time of interventions

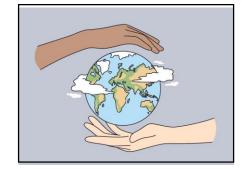
Deltawerken (1953-1997)

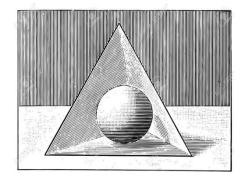
Regime	Predict & control
focus	Stability, performance individual (infrastructural) system/elements
problem perception	Changes in system/drivers are predictable and can be controlled
principle strategy	Robustness, static norms and standards, fail-safe, probabilistic approaches
governance	Top down, dominance of engineers

Delta Program: 2006 -2015

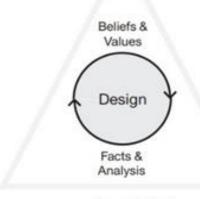
Regime	Adaptive & integrative
focus	Persistence, overall infrastructural systems performance, adaptive capacity
problem perception	Changes in system/drivers are uncertain, slow changing drivers, anticipation (there is enough time),
principle strategy	Adaptive planning, strategic alternatives (pathways), Incrementally adjust (adapt)
governance	Multi-level, informed decision making/science




Spatial design of a section of the Dutch delta in 2100



Regime	Restorative redirection
focus	Desired future, imagination, values matter
problem perception	Changes in system/drivers are uncertain, values in dispute, stakes high and decisions urgent
principle strategy	Planned adaptation, foster positive tipping points, transformation, nature-based
governance	Multi-level, strong influence of politics, peer community involvement


Uniting imagination & evidence by design

human experience, cultural identity, the meaning of life, ethics, aesthetics, and the nature of knowledge

future imagined

Humanities

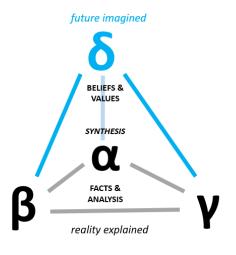
Natural Sciences

Social Sciences

reality explained

empirical observation, experimentation, and the development of model

nature > npj ocean sustainability > comment > article


Comment Open access Published: 07 November 2024

Uniting imagination and evidence by navigate climate survival in urbanizing deltas

Chris Zevenbergen [™], Maurice G. Harteveld, Pieter Bloemen, Maarten van Ham, Wim van den Doel, Marcel H. Hertogh, Fransje Hooimeijer, Taneha Bacchin, Eddy Moors, Jeroen Rijke & Ellen Tromp

npj Ocean Sustainability 3, Article number: 53 (2024) | Cite this article

2013 Accesses | 55 Altmetric | Metrics

Concluding remarks:

- Design is driving change!
 - Synthesis (imagination and evidence)
 - Hypothesis
 - Analysis (and testing).
- Design principles:
 - from efficiency to maximizing value
 - design for failure & extreme scenarios
 - Connecting temporal and spatial scales/systems approach
 - a portfolio of measures (reconciling short term measures with long-term vision)
 - long –term horizon: to seize/create opportunities (positive tipping points)